The research on pthalates continues – 
No one knows to what degree genetics or environmental agents cause lupus, an autoimmune disorder that affects the skin, joints, and internal organs including the kidneys. However, researchers at Indiana State University may have strengthened the environmental evidence by discovering that phthalates trigger lupus antibodies in a mouse model.

Phthalates are found in adhesives, cosmetics, fragrances, vinyl flooring, polyvinyl chloride pipe, and certain toys and medical supplies. According to a report out of the Centers for Disease Control and Prevention and the National Toxicology Program, published in the October 2000 issue of EHP, phthalate exposure is more extensive than previously suspected, especially in women aged 20–40 years. Other studies have pointed to possible links with asthma, rhinitis, and eczema in children as well as altered genital development in male infants. The new lupus findings add to a growing list of potential health effects caused by these chemicals.

In lupus, the immune system loses its ability to tell the difference between foreign substances (antigens) and the body’s own cells and tissues. The immune system makes antibodies against the body itself, causing inflammation, tissue injury, and pain. Up to 1.5 million Americans have been diagnosed with lupus, and another 16,000 develop the disease each year, according to the Lupus Foundation of America.

While investigating the gene sequence of a monoclonal antibody used as a marker for tumor growth, biochemist Swapan Ghosh, interim chair of the Life Sciences Department at Indiana State University, noticed that it shared 98% similarity with an antibody protein component (light chain) made by NZB mice, a popular model for autoimmune diseases. In lupus, such antibodies attack DNA in the kidneys, heart, and lungs. The finding, published in the December 2003 issue of Immunology, was a surprise: “I was not studying lupus or autoimmune diseases at all,” says Ghosh. But he took advantage of the unexpected turn and has launched a series of experiments to further explore the phthalate–lupus connection.
Click to read the full article.